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The fractional diffusion equation that is constructed replacing the time derivative with a fractional deriva-
tive, 0Dt

�f =C��2f /�x2, where 0Dt
� is the Riemann-Liouville derivative operator, is characterized by a prob-

ability density that decays with time as t�−1 ���1� and an initial condition that diverges as t→0 �R. Hilfer, J.
Phys. Chem. B 104, 3914 �2000��. These seemingly unphysical features have obstructed the application of the
fractional diffusion equation. The paper clarifies the meaning of these properties adopting concrete physical
interpretations of experimentally verified models: the decay of free-carrier density in a semiconductor with an
exponential distribution of traps, and the decay of ion-recombination isothermal luminescence. We conclude
that the fractional difusion equation is a suitable representation of diffusion in disordered media with dissipa-
tive processes such as trapping or recombination involving an initial exponential distribution either in the
energy or spatial axis. The fractional decay does not consider explicitly the starting excitation and ultrashort
time-scale relaxation that forms the initial exponential distribution, and therefore it cannot be extrapolated to
t=0.

DOI: 10.1103/PhysRevE.72.011109 PACS number�s�: 05.40.Fb, 05.60.�k, 71.23.Cq, 72.20.Jv

I. INTRODUCTION

The modeling of the dynamics of anomalous processes by
means of differential equations that involve derivatives of
fractional order has provided interesting results in recent
years in a variety of fields of science and engineering �1,2�.
For example, physical models based on fractional derivatives
have been amply studied in relation to scaling concepts, car-
rier transport in heterogeneous or disordered media �3�, and
the relaxation of complex systems �4�. We highlight as the
most studied and applied model the fractional diffusion equa-
tions �FDE�, which play an important role in describing
anomalous diffusion �3�.

In this paper, we discuss the physical interpretation of a
FDE based on the replacement of the time derivative in the
ordinary diffusion equation with a derivative of noninteger
order,

0Dt
�f�x,t� = C�

�2f�x,t�
�x2 . �1�

Here, f is a probability distribution and C� is the frac-
tional diffusion coefficient, which takes the form

C� = K0��
1−� �2�

with respect to the ordinary diffusion coefficient K0 �in
cm2/s� and a time constant ��. 0Dt

� is the fractional
Riemann-Liouville derivative operator of order 0���1 and
with lower limit t=0. It is defined as �3,5�

aDx
��f�x�� =

1

����
d

dx aIx
1−�, �3�

where

aIx
��f�x�� =

1

�����a

x

�x − y��−1f�y�dy �4�

is the Riemann-Liouville fractional integral operator of order
� with a lower real limit a and ���� is the gamma function
�1�. The fractional time derivative can be written

0Dt
�f�t� =

1

��1 − ��
d

dt��0

t f�t��
�t − t���dt�� �5�

and its Laplace transform is

L�0Dt
�f�t�	 = u�f�u� − f0, �6�

where f0 is defined below in Eq. �7�.
The properties of Eq. �1� have been widely studied in the

literature. The solutions in different dimensions of space un-
der certain initial conditions and the moments of the distri-
bution have been obtained �4–9�. Feldman et al. �10� consid-
ered Eq. �1� for the fractional generalization of the Liouville
equation for dissipative systems, and Tarasov �6� provided a
fractional analog for the normalization conditions for distri-
bution functions. The FDE �1� was used also to define a
non-exponential relaxation process that is not based on a
distribution of relaxation times �4�.

Equation �1� was discussed as a natural generalized diffu-
sion equation suggesting that it could describe anomalous
diffusion process �5,11–16�. However, those possible appli-
cations have been scarcely developed because of a problem
of physical interpretation, owing to the fact that the f�x , t� is
not a normalized function �14,16� and the initial condition
could not be the usual one. Indeed, it was found �5� that
f�x , t� is divergent for t→0. The structure of the initial con-
dition was described in the context of the Cauchy problem
by Trujillo et al., see Lemma 9 in �7�, implying*Email address: bisquert@uji.es
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f0 = 
�0It
1−�f��t�
t=0 = lim

t→0
t1−�f�t� . �7�

Therefore, the solution diverges as f�t�� t�−1 as t→0.
This fact has been discussed in several works. Hilfer related
the nonlocal form of the initial condition �5� to the fractional
stationarity concept �12,17� which establishes, in addition to
the conventional constants, a second class of stationary states
that obey power-law time dependence. Recently, Ryabov �9�
discussed the solution and initial conditions of Eq. �1� in
different dimensions and concluded that “virtual sources” of
the diffusion agent are required at the origin, meaning that
some mass is injected at the origin. However, this injection is
not defined by the boundary conditions of the problem. Thus,
the author �9� concludes that the presence of such “virtual
sources” in solutions is physically meaningless and one
needs to resolve this contradiction. Also, recently I showed
�18� that the FDE �1� describes the diffusion of free carriers
in multiple trapping �MT� with an exponential distribution of
gap states, but the question of the initial distribution was not
considered in that work �18�.

In this paper, we consider the apparent contradiction men-
tioned by Ryabov �9� by adopting definite physical interpre-
tations that are experimentally verified, and we realize the
properties of the formal model with a fractional time deriva-
tive. We first discuss the initial condition of Eq. �1� and the
decay law that is intrinsic to this equation even in spatially
homogeneous conditions. In relation with the MT interpreta-
tion �18�, thereafter we revise the heuristic arguments for
describing the transient decay of an injected pulse of free
carriers in amorphous semiconductors �19–21� in order to
discuss the meaning of the initial condition of the FDE. We
also discuss the power-law decay of isothermal luminiscence
for ion recombination in condensed media �22–24�. We con-
clude that Eq. �1� is a physical representation of diffusion in
disordered media with dissipative processes such as trapping
or recombination.

II. INITIAL CONDITION AND DECAY LAW OF THE FDE

Let us consider the implications of Eq. �1� for a diffusion
process. Taking into account that the diffusive flux of par-
ticles �normalized by the total number density� is given by

j = − K0
� f

�x
, �8�

Eq. �1� can be written as a generalized equation of continuity,

��
�−1

0Dt
�f�x,t� = −

� j

�x
. �9�

Integrating between two impermeable boundaries, such
that j�x1�= j�x2�=0 �it may be, for example, x1=0 and x2

= +	�, we obtain

0Dt
���

x1

x2

f�x,t�dx� = 0. �10�

In the ordinary diffusion problem, the equivalent of Eq.
�10� �with the normal time derivative� states the conservation

of the number of particles: Since no particles are crossing the
boundaries, their number must be constant. However, Eq.
�10� does not state the conservation of the probability, but
instead the condition

0It
1−���

x1

x2

f�x,t�dx� = const. �11�

The fractional integral of the total probability is preserved
during the evolution. Therefore, Eq. �1� involves a peculiar
and nontrivial temporal dynamics. To make the point clearer,
let us consider the expression of the FDE in Fourier-Laplace
space �with variables x→q and t→u�,

f�u,q� =
f0,�

��
�−1u� + K0q2 . �12�

The case q→0 describes a situation in which the carrier
density is homogenous, i.e., there is no diffusion at all, and
this is the only case that we will consider in this paper. From
Eq. �12� we obtain

f�u,0� = f0,���
1−�u−�. �13�

Now the time decay of the probability in spatially homo-
geneous conditions is given by

f�t� =
f0,���

−�+1

����
t�−1. �14�

The last result, the decay law for Eq. �1�, shows that the
number of particles decreases with time.

It has been remarked in the literature �5,7� that Eq. �1�
requires an initial condition for the Green function of the
form

0+It
1−�� f�x,0 + �� = f0,�
�x� , �15�

where 
�x� is the Dirac measure at the origin and f0,� is a
constant. Indeed, as pointed out above, it has been shown
rigorously �7� that the initial condition f�t� satisfies the con-
dition

lim
x→0+

t1−�f�t� = const. �16�

It is clear that the temporal dynamics in the FDE implies
the divergence of f�t� as t→0 �5,7�, a point that will be
discussed further in Sec. IV.

III. ANOMALOUS FDE WITH CONSERVED
PROBABILITY DENSITY

Note that another FDE has been amply studied in the
literature of anomalous diffusion �3,5,14,16,25–27�, namely

�

�t
f�x,t� = K� tD0

1−� �2f

�x2��x,t� . �17�

This last equation is rigorously related �5,28� to the
continuous-time random walk formalism of Scher and Mon-
troll �29�. Equations �1� and �17�, obviously, are not equiva-
lent �5�. We can see this inequality, for instance, comparing
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the expression of the FDE �17� in Fourier-Laplace space,
which is

f�q,u� =
f0,�u�−1

u� + K0��
1−�q2 , �18�

and the corresponding expression for Eq. �1� given by Eq.
�12�.

Equation �17� has the initial condition f�x ,0�= f0
�x� and
the probability is conserved as in ordinary diffusion. Notice
that shifting the Riemann-Liouville derivative to either side
of the diffusion equation changes drastically the resulting
temporal dynamics.

IV. DECAY OF FREE CARRIERS IN SEMICONDUCTORS
BY TRAPPING IN BAND-GAP STATES

The multiple trapping �MT� model applies to a semicon-
ductor with a band of extended states and a tail of localized
states, which usually takes the exponential form, as sche-
matically shown in Fig. 1,

g�E� =
Nt

kBTc
exp��E − Ec�/kBTc� , �19�

where Nt is the total density of traps, Ec is the lower band
edge energy, kB is Boltzmann’s constant, and Tc characterizes
the broadening of the distribution, with �=T /Tc�1 at tem-
perature T. The density of conduction-band electrons can be
written nc=Ncfc, where Nc is the total density and fc the
fractional occupancy of conduction-band states. The mobility
is assumed to drop abruptly at the energy of transition from
localized to extended states, so that J=Ncj is the diffusive
flux of conduction-band electrons, where j is described by
Eq. �8�, where K0 is the diffusion coefficient of the electrons
in extended states.

This model explained long tails of the electrical current
observed in time-of-flight experiments �30�, the time depen-

dence of transient photocurrents �21�, and it was used for
deriving drift mobilities �31�. MT has been widely used to
describe carrier transport in amorphous semiconductors and
is also of current research interest, for example in nanostruc-
tured semiconductors such as networks of TiO2 nanoparticles
used in dye-sensitized solar cells �32–34�. When MT is rep-
resented by a FDE, as shown in �18�, the characteristic time
in Eq. �2� takes the value

�� = �������1 − ��
Nt

Nc
�1/�

�0
−1. �20�

In the following, we review the heuristic arguments for
the evolution of free-carrier density in MT provided by
Tiedje and Rose �19,20� and Orenstein and Kastner �21� �see
also �31��, and we will show that these arguments explain
and give a simple interpretation to the temporal decay of the
probability of the FDE, described in Eq. �14�, which is a
crucial issue in the interpretation of the FDE �11,14–16�. As
already mentioned, we consider that both free and trapped
electron densities are homogeneous in the semiconductor.
This assumption corresponds to the experimental technique
of transient photocurrents in conditions of homogeneous
light absorption �35�. Furthermore, we note that the disap-
pearance of carriers by recombination is completely ne-
glected in this model.

If at time t=0,n0 excess carriers are optically excited into
the transport states of a semiconductor, they are rapidly ther-
malized in the extended states, and at a time of the order of
one trapping time ��10−13−10−12 s�, they will be trapped in
the localized states. The distribution of trapped carriers is
proportional to the density of states for an energy-
independent capture cross section. Trapped carriers are sub-
sequently released into the transport states. The energy depth
below the transport band becomes a key factor for the fre-
quency of the transitions between a given trap and the con-
duction band, because the probability of detrapping to the
conduction band is proportional to exp��E−Ec� /kBT�. After a
time t, the shallower states release and retrap electrons a
large number of times, so that these states effectively obtain
a thermal distribution. In contrast, the electrons in deeper
levels remain frozen, as indicated in Fig. 1. The demarcation
energy level Ed�t� above which electrons are released at time
t is determined by

t = �0
−1 exp��Ec − Ed�t��/kBT	 . �21�

According to Eq. �21�, the demarcation level sinks with
time into the distribution of localized states, depopulating the
states above Ed and adding more trapped charge to the states
below Ed in addition to the already present frozen-in charge,
so that the total density of excess carriers remains constant,
as indicated in Fig. 2. This Ed�t� acts in the way of a quasi-
Fermi-level, and the bulk of the injected charge will be con-
centrated near Ed�t�. The distribution of carriers in the band
gap is described by �36�

nt�E,t� = ��t�g�E�F�E,Ed�t�� �22�

in terms of a time-dependent occupancy factor ��t�, which
ensures that the intitial excitation is conserved, and the
Fermi-Dirac distribution function,

FIG. 1. �Color online� Energy diagram of a semiconductor with
a transport level �indicated by the energy of the conduction band,
Ec� and localized states in the band gap. The left diagram shows the
density of states �DOS� and the right diagram shows the trapping-
detrapping kinetics as a function of the depth of the localized state
in the band gap. At time t after injection, states shallower than the
demarcation level Ed, defined in Eq. �21�, are able to frequently
detrap and retrap electrons and establish thermal equilibrium, while
electrons trapped at states deeper than Ed have a negligible prob-
ability of being released.
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F�E,EF� = �1 + e�E−EF�/kBT�−1. �23�

The conservation of carriers can be stated as

��t��
−	

Ec

g�E�F�E,Ed�t��dE = n0. �24�

Equation �24� can be transformed to

��t���0t�−aNt��
0

�0t x�−1

1 + x
dx = n0. �25�

Provided that �0t1, Eq. �25� gives

��t� =
n0

Nt�������1 − ��
��0t��. �26�

The occupancy factor ��t� in Eq. �26� increases with time
to compensate for the sinking of the quasi-Fermi-level Ed�t�.
Equation �26� is valid starting at times of the order t
�10−10 s, much longer than individual trapping times. Alter-
natively, this means that at the initial instant t0�0 where the
Eq. �26� applies, the quasi-Fermi-level must be several times
kBT below the conduction band. In this case, the density of
electrons in the conduction band is a small tail of the total
distribution,

nc�t� = Nc��t�e�Ed�t�−Ec�/kBT, �27�

such that nc�n0, see Fig. 2. Using Eqs. �21� and �26�, it is
obtained that the occupancy factor of electrons in extended
states fc=nc /Nc decreases with time as

fc�t� =
n0

Nt�������1 − ��
��0t��−1. �28�

As a physical interpretation of the decay process of the
type t�−1 for the free electrons, we remark that in Eq. �28� the
dependence t−1 is due to the sinking of the demarcation level
by the release of trapped carriers, while the dependence t�

arises from the increasing occupancy at Ed�t� by retrapping
of the released carriers.

We must emphasize that these considerations leading to
the decay law of Eq. �28� were explained and confirmed
experimentally in the 1980s �19,21�. Now we remark that in
Eq. �28� we have recovered the decay law that is obtained
from the FDE, Eq. �14�. Hence, the decay law that results
from the assumption of thermalization in the MT model

�19,21,31� corresponds to the rigorous solution of the ho-
mogenous case of the FDE �1�.

This physical model allows us to understand the physical
significance of the seemingly strange temporal structure of
the FDE �1�. Normally one expects that an equation of mo-
tion describes the dynamics of the whole system. However,
Eq. �1� is a different kind of equation of motion, in the sense
that a part of the dynamics is not described by it. In the
general kinetics of the trapping process, the distribution of
carriers in the band gap continuously shifts in the energy
space, while maintaining the shape and total area �Fig. 2�.
This is a dissipative dynamics in which the total energy �de-
termined by the electrochemical potential of the electrons
Ed�t�� decreases with time while the number density is con-
served. The relaxation in the full energy space is not de-
scribed explicitly in Eq. �1�, which only contains the result-
ing evolution of the carriers in extended states, in
correspondence with the requirements of the experimental
techniques that monitor carrier transport detecting only the
free carriers. The disappearance of the probability for fc
takes on a perfectly valid physical meaning as a decrease of
the number of free carriers with time. In conclusion, the frac-
tional derivative maps a complex local dynamics of a many-
body problem into the diffusion equation.

When using the FDE to represent the dissipative process,
such process must consistently be active in the initial condi-
tions, i.e., a 
 sheet of charge injected at some point cannot
be stationary but must be decreasing with time, which ex-
plains Eqs. �15� and �16�. Concerning the divergence of the
solution of the FDE as t→0, which is remarked in the litera-
ture �5,8�, it must be recognized that in the physical system
described above, the decay law Eq. �28� cannot be extrapo-
lated to t=0, because Eq. �28� requires a minimal time for
the formation of the initial exponential distribution of elec-
trons at Ed�Ec and a thermal distribution at the levels close
to Ec, as indicated in connection with Eq. �26�. Therefore, the
divergence of the initial condition at t→0 is not an impedi-
ment for the application of the FDE of Eq. �1� in the descrip-
tion of experiments.

We next consider another physical problem with certain
points in common with the decay of free electrons in semi-
conductors with traps. The model for ion-geminate recombi-
nation allows for a discussion of the apparent divergence of
the initial condition in configurational space, instead of the
energy axis.

V. THE DECAY LAW IN GEMINATE-ION
RECOMBINATION

Many organic compounds supported in a solid matrix can
be easily oxidized by a light pulse. The electrons initially
trapped in the surrounding medium, when returning to the
ionized species, cause a time-dependent luminescence that
has been known, for more than half a century �22�, to follow
a decay law of the form t−m, with m close to 1. Such power-
law decays have been recently observed by transient absorp-
tion spectroscopy in polymer/fullerene composites �37,38�,
which are of current interest for organic solar cells.

Debye and Edwards were the first to propose a model for
ion-recombination luminescence �22�. In this model, they de-

FIG. 2. �Color online� Energy diagram of a semiconductor
showing the exponential density of states �DOS� and the energy
distribution of carriers. The peak of the distribution is at the demar-
cation level Ed and sinks deeper in the band gap with time.
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rived the initial distribution of electrons based on the idea of
diffusion of trapped electrons towards the recombination
center, with a recombination rate of the form t−m. The model
was later critiziced by Abell and Mozumber �23� on the
grounds that the distribution function would diverge as
t→0. The latter authors modified some assumptions of the
theory but then the resulting decay law was of the form t−3/2

as in standard diffusion, in contrast with the observation of
an exponent m�1. We consider here a related model of Ta-
chiya and Mozumber �24� which explains the general decay
law t−m from the assumption of tunneling recombination.
This model describes well the recent experimental observa-
tion of the photovoltage decay of electrons injected from
photo-oxidized dye molecules into ultrathin TiO2 layers �39�.

The model considers the usual exponential rate law for
spatial-dependent tunneling recombination of electrons with
respect to the distance r to the recombination center,

k�r� = �0e−r/a, �29�

where �0 and a are parameters. The value of �0 is of the
order of 10−15 s−1, and the value of a is of the order of tenths
of a nanometer. The initial probability distribution for the
distance between the trapped electron and the parent ion,
f0�r�, is well approximated by an exponential function �24�

f0�r� =
1

b
e−r/b. �30�

The probability distribution evolves with time as

f�r,t� = e−k�r�t f0�r� , �31�

and the integrated probability, representing the fraction of
trapped electrons that survive at time t, is given by

F�t� = �
0

	

e−k�r�t f0�r�dr , �32�

which can be written as

F�t� =
a

b
���0t,a/b���0t�−a/b �33�

in terms of the incomplete gamma function ��x ,z�, which for
x→	 reduces to the gamma function ��z�. Therefore, at
times �0t1, the electron density decays in the power-law
form as

F�t� =
a

b
��a/b���0t�−a/b. �34�

The time-dependent luminescence is given by I�t�
�dF /dt� t−1−a/b, and m�1 is obtained provided that a�b.

As mentioned above, this system bears a strong resem-
blance with the relaxation of free carriers in amorphous
semiconductors discussed in the foregoing. In the present
system, the probability of recombination decreases exponen-
tially with the distance from the recombination center. Con-
sequently, the front of the initial exponential distribution re-
cedes with time from r=0, see Fig. 1 in �24� and also �40�.
The picture is similar to Fig. 2, but in this case the profile
changes in configuration space and the total number of initial
carriers formed by the external excitation is not conserved.

The power law decay in Eq. �34�, if extrapolated to
t→0 gives an unphysical divergence, and this led to some
discussion in the literature �23�, as remarked before. How-
ever, while Eq. �34� is useful for explaining the experimental
observation of power-law decays of total carrier density over
several decades in time �37–39�, it should be recognized that
the complete model starts from an exponential distribution at
t=0, i.e., without a divergence, a fact which is recovered as
F�0�=1 in the general expression Eq. �33�. If indeed �0 is of
the order 10−15 s−1, the time domain where the decay departs
from the power law occurs at such short time scales that
usually it will not be experimentally observable, unless using
the fastest detection techniques available. In any case, Eq.
�34� must be accompanied by the restriction �0t1, as
clearly remarked in Ref. �24�.

VI. CONCLUSION

An apparent contradiction of the physical applications of
a fractional time derivative has been clarified. The physical
models related to the fractional time derivative are aimed to
describe the decay of a selected kind of carrier with an initial
distribution of an exponential form, either in the energy or
spatial axis. The physical models that represent the decay as
a power law in time are restricted to account for the dissipa-
tive processes of trapping and/or recombination and do not
consider explicitly the necessary starting excitation and ul-
trashort time-scale relaxation that forms the initial exponen-
tial distribution. For this reason, the models with a fractional
time derivative or power law decay in time cannot be ex-
trapolated to t=0.
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